The Lithium Tokamak eXperiment - LTX

R. Majeski, R. Kaita, L. Zakharov, G. Gettelfinger, S. Jardin, H. Kugel, S. Raftopoulos, V.Soukhanovskii, G. Schmidt, R. Woolley, *PPPL*, S. Krasheninnikov, M. Baldwin, S. Luckhardt, *UCSD*, R. Maingi, L. Baylor, M. Gouge, *ORNL*, T. Rognlien, *LLNL*, D. Stutman, M. Finkenthal, *Johns Hopkins University*, M. Ulrickson, *SNL*

Introduction

- The LTX proposal has been funded as a result of this years'
 ICC solicitation
 - Timeline was "stretched" to four years, but fully funded at the requested level
- ◆ LTX will be the first "new" machine in the U.S. dedicated to a PSI issue since ISX
- We are hoping that the ongoing interaction between the PFC community and CDX-U will continue with LTX, despite the change in funding source

Ultimate goal of the lithium tokamak: engineering simplicity in an attractive fusion reactor

- "Circular" tokamak equilibrium. A~4.
- "Neutral" stability to vertical displacements
- ◆ R~6m, a~2m, B=5T with flowing lithium walls
- $P_{\rm DT} = 4.5 \; \rm GW$
- Fully bootstrapped
 - No core or edge current drive
 - 5 n_e(10²⁰)

 B(T)

R(m)

- Not sensitive to bootstrap "overdrive"
 - No need for current profile control
- Sustained only with high-field side gas/cryogen jets

PFC meeting 17-20 November 2003 Oakbrook, Ilinois

L. Zakharov

Plan for LTX

- Modify CDX-U to accomplish the LTX objectives
 - R=40 cm, a=26 cm, \Box =1.55, B_T=4 kG, I_p <400 kA (50 msec flattop)
- Lithium wall technology: thin films
 - Recoated between discharges
 - Plasma-aligned, heated wall (tungsten sprayed, chromium plated copper shell)
 - Poloidal field, control system upgraded
- Core fueling
 - Multiple (8) pellet injector (ORNL separately funded)
 - Supersonic gas injector
 - Upgraded ohmic system, toroidal field to permit pellet sustainment
- Diagnostic upgrades
 - Improved Thomson scattering (edge)
 - Expanded magnetics for current profile reconstruction

TSC modeling for LTX

Ohmic, high recycling

Table 2.1: Parameters used in TSC simulations of LTX discharge.

Major Radius	R_0	0.4 m
Minor Radius	a	0.26 m
Triangularity		0.2
Ellipticity		1.33
Plasma Current	I_P	250 kA
Toroidal Field	\mathbf{B}_{T}	0.38 T
Simulation Time	t _{sim}	20 ms

>GLF23 model for particle transport

S. Jardin

Modeling with TSC predicts that LTX will achieve flat electron temperatures with no electron conduction losses

4 10 6

A7.7992E-03 N1.7349E-02

88.5963E-03 N1.8143E-02

– ω ω

MAJOR RADIUS

17-20 November 2003 Oakbrook, Ilinois

Pellet-fueled, no recycling

Table 2.2: Comparison of Centrally-fueled and Edged-Fueled TSC simulations.

		Centrally-fueled	Edge-fueled
Line-averaged density	<n<sub>e>_L</n<sub>	0.2-0.28 🛘 10 ²⁰ m ⁻³	$0.16 \prod 10^{20} \mathrm{m}^{-3}$
Central density	$n_e(0)$	$0.5-7.5 \square 10^{20} \text{ m}^{-3}$	$0.20 \ \Box \ 10^{20} \ \mathrm{m}^{-3}$
Internal energy	W	0.9 kJ	1.1 kJ
Internal inductance	ℓ_{i}	0.79	0.96
Central electron Temperature	Te(0)	200-410 eV	800 eV
Central Ion Temperature	Ti(0)	90-110 eV	150 eV
Peak-to-average Elec. Temp.	Te(0)/ <te>_V</te>	0.9 – 1.5	2.2
Peak-to-average Ion Temp.	Ti(0)/ <ti>_V</ti>	1.5 - 2.7	1.9
Radius of q=1 surface	R(q=1)	0.11 m	0.15 m
Surface Loop Voltage	$V_{\rm L}$	1.2 – 1.6 V	1.4 V
Convective electron energy transport		1.00	0.075
Convective ion energy transport		0.67	0.075

>Trapped electron modes are completely stable

S. Jardin

ASTRA modeling also indicates that an LTX-scale device can test the effects of core fueling with no recycling

- Model particle sources as shown
- Neoclassical transport
- Edge pedestal current predicted to be significant in low recycling case
 - Copper shell will provide stability

PFC meeting 17-20 November 2003 Oakbrook, Ilinois

L. Zakharov

Lithium wall technology will use thin films

Lithium-coated, heated, plasma-aligned first wall E-beam sources

PFC meeting

17-20 November 2003 Oakbrook, Ilinois

- Electron-beam deposition
 - 1000 Å coating applied between discharges
 - Fixed beam, lithium sources
 - 3 on top, 3 on bottom
- Wall temperature of 250-350 °C
 will keep lithium coating molten
- Heat-conducting copper shell
 - Maintain molten film
 - Contribute to stability
 - LCFS held conformal to ~ 1
 cm tolerance with PF set
 - Test wall coupons are now at the sprayer

CPS lithium sputtering source

Conformal tungsten-sprayed, chromium plated cast copper shell will form first wall in LTX

- Shell will provide largest possible PFC surface area to minimize deuterium flux/unit area
- Uniform surface temperature with modest complement of heaters
- MHD stabilization of the "peeling" mode may be additional benefit

Target is ~10% recycling coefficient

- UEDGE modeling (T. Rognlein)
 - Complements transport models (ASTRA)
- Liquid lithium shown experimentally to produce adequate recycling reduction
- CDX-U (with much more modest reduction) has already made preliminary observations of a change in L_i

ICC-Seattle 28-30 May 2003

ORNL has been funded to provide a pellet injector Lead candidate now an 8 barrel version of a "suitcase" injector

Pellet Penetration as fn of Speed Te(0)=200eV, $ne(0)=0.5x10^20 m^3$ 0.30

Pellet Radial Speed (m/s)

- •0.5 1 mm pellets are stopped by the LTX plasma
- •Particle content is 1/3 1/2 the LTX particle inventory

Te(0)=200eV, $ne(0)=0.5x10^20 m^3$ Cylindrical Pellet Diameter: 0.75 mm Pellet Radial Speed: 100 m/s

Pellet Model: ORNL Neutral Gas Shielding Model (also modeled in TSC) (ORNL model made available by L. Baylor)

PFC meeting 17-20 November 2003 Oakbrook, Ilinois

Novel supersonic gas injectors will complement pellet fueling

Assembly drawing - modified PV-10 piezoelectric valve with mount and Laval nozzle

high-field side ECH for

startup

Nozzle design scaled from working Mach 8 wind tunnel at Gaseous Dynamics Laboratory, Princeton University (A. Smits, M. Baumgartner)

PFC meeting 17-20 November 2003 Oakbrook, Ilinois

G. Gettelfinger, H. Kugel, V. Soukhanovskii

A new technique - DHD fueling - will be tested

- ◆ A "DHD" is a discrete high pressure gas "bubble" which is ionized just inside the LCFS on the high-field side
- ◆ Electrons are immediately heated; expands until □ 1
- Accelerated towards the LFS
- Deposits particles <u>and</u> energy in the core
 - Low recycling discharge with peaked temperature
- Enhances \square_E (14 msec in this ASTRA simulation).

PFC meeting 17-20 November 20 Oakbrook, Ilinois

Poloidal field coil set designed for good alignment with shell over wide range of equilibria

LTX and transport

Nearly ALL of the issues for a lithium-walled component test facility (CTF) will be addressed in LTX

Issue	Relevant to:	Addressed in:
Recycling on lithium	PE, CTF, reactor	CDX-U, PISCES-B, T11-M, LTX
Temperature profiles in low recycling regime	PE, CTF, reactor	LTX
Fueling in low recycling regime	PE, CTF, reactor	LTX, CDX-U
Particle transport with core fueling, no recycling	PE, CTF, reactor, ALL tokamaks/STs	LTX
Lithium sputtering/influx	PE, CTF, reactor	CDX-U, LTX
Confinement with novel fueling (DHD), core heating	PE, CTF, reactor	LTX
Helium pumping	CTF(?), reactor	FLIRE, other?
Stability of bulk liquid lithium to MHD forces	Reactor	CDX-U, tests possible but not planned in LTX
MHD drive of liquid lithium PFC	Reactor	LIMITS (SNL), MTOR (UCLA), FLIRE
Stability of MHD driven lithium film in a tokamak	Reactor	Biggie. Requires a dedicated facility.
Is this worth it?	All	LTX

Summary

- Advantages of a Lithium Tokamak Reactor:
 - Compact
 - » High beta, high wall loading
 - Simple
 - » Circular or moderate D-shaped TF coils
 - » Low tech fueling, no current drive,...
 - Very low activation
 - Minimal in-vessel maintenance
 - » Self-renewing first wall
- Development path is comparatively short, low cost
 - It's a tokamak. We know about tokamaks.
 - Coated plate technology will work through the CTF
- Validity of approach is strongly supported by present experiments
- ◆ The LTX program has been funded to begin this fiscal year

